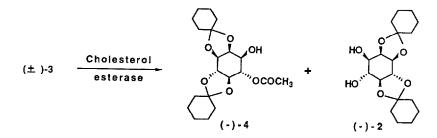
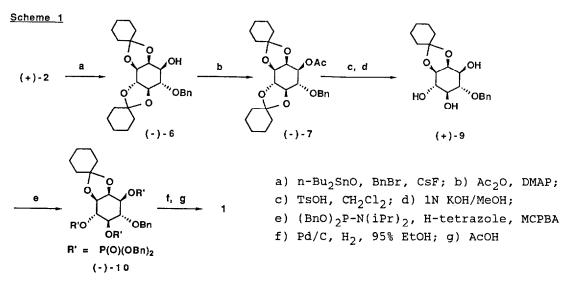

AN EFFICIENT SYNTHESIS OF OPTICALLY ACTIVE <u>D-MYO</u>-INOSITOL 1,4,5-TRIPHOSPHATE

Yeuk-Chuen Liu and Ching-Shih Chen*


College of Pharmacy, University of Rhode Island Kingston, RI 02881, USA

Summary: An effective synthesis of <u>D-myo</u>-inositol 1,4,5-triphosphate was developed using a chiral inositide precursor which can be prepared via a facile enzymatic or chemical method.

Recently, much attention has been focused on the metabolic cascade of membrane phosphoinositides, which regulates intracellular Ca^{+2} mobilization in response to a variety of extracellular signals¹. This complex information-transducing process is initiated by a receptor-mediated breakdown of phosphatidyl inositol 4,5-bisphosphate with the formation of <u>D-myo</u>-inositol 1,4,5-triphosphate [Ins(1,4,5)P₃] (<u>1</u>) and 1,2-diacyl-glycerol, both of which function as second messengers eliciting specific intracellular responses. It has also become clear that Ins(1,4,5)P₃ is implicated in the generation of two other biologically active inositol polyphosphates¹, Ins(1,3,4)P₃ and Ins(1,3,4,5)P₄, whose <u>in vivo</u> functions still remain unclear. As part of our interest in exploring this intriguing signal-transducing mechanism, we have developed an effective synthetic procedure which allowed the preparation of optically pure <u>1</u> in multi-mmol quantities.


In the past², one general problem that has impeded the preparation of enantiomeric <u>1</u> in quantities was the optical resolution of inositide intermediates. Cumbersome procedures entailing chiral resolving agents² or a chiral HPLC column³ had to be adopted in the synthesis to separate individual enantiomers in small quantities. Herein, we report a facile synthetic route to optically active <u>1</u> using a chiral precursor, (+)-1,2:5,6-di-O-cyclohexylidene-<u>myo</u>-inositol <math>((+)-2) which can be easily prepared via a facile enzymatic or chemical method. The diacetate of $(\underline{+})-\underline{2}^4$ $((\underline{+})-\underline{3})$ was readily digested by a number of hydrolytic enzymes. Of these, cholesterol esterase (Sigma, from bovine pancreas) exhibited high regio- and enantio-preference in removing the acetate functions. In a typical experiment, 1 g of $(\underline{+})-\underline{3}$, dissolved in 2

ml of DMF, was finely suspended in 80 ml of phosphate buffer (250 mM, pH 7.5) containing 0.5% Tween 80 and 120 units of cholesterol esterase. The suspension was incubated at 28°C on a rotary shaker (250 rpm) for 168 hr, which yielded a mixture of (-)-2 (412 mg; 85% ee^5 ; $[\alpha]_D^{20} = -15.3$, c = 1.5, CHCl₃). (-)-4 (345 mg; 86% ee^5 ; $[\alpha]_D^{20} = -8.4$, c = 1.2, CHCl₃), and a small amount of 3-acetyl-1,2:5,6-di-O-cyclohexylidene myo-inositol (30 mg, optical purity not determined). Alkaline hydrolysis of the acetate of (-)-4 (10 equiv. of 1N KOH/MeOH, 25°C, 1h) afforded (+)-2 which was subsequently recrystallized from ether-hexane (1:3) to give the diol with optical purity greater than 98% $([\alpha]_D^{20} = +18.4$, c = 1.0, CHCl₃; recovery: 280 mg; combined yield: 70%).

Alternatively, the racemic mixture, $(\pm)-2$, could also be resolved chemically after being converted to the corresponding di-1-menthyl carbonates⁶ (<u>5a</u> and <u>5b</u>)⁷. The two diastereomers exhibited quite different chromatographic mobility (silica gel TLC (0.25 mm); ether/hexane, 1:3; R_f: <u>5a</u>, 0.87; <u>5b</u>, 0.74), and thus were readily separated by SiO₂ chromatography (ether/hexane, 1:20 to 1:15). Alkaline hydrolysis of the carbonates of <u>5a</u> and <u>5b</u> gave optically active diols (-)-2 (>98% <u>ee</u>; $[\alpha]_D^{20} = -18^\circ$, c = 1.0, CHCl₃), and (+)-2 (>98% <u>ee</u>; $[\alpha]_D^{20} = +18.4^\circ$, c = 1.0, CHCl₃), respectively, in nearly quantitative yields. Retrospectively, optically pure <u>2</u> may serve as a versatile precursor to various inositol phosphates, which can be illustrated by the efficient synthesis of Ins(1,4,5)P₃ (Scheme 1).

(+)-2 (2.54 mmol) underwent selective partial benzylation by reacting with di-n-butyltin oxide (2.8 mmol), followed by benzyl bromide (3.8 mmol) in the presence of cesium fluoride⁸ (6.4 mmol) to afford (-)- $\underline{6}^9$ ([α]_D^{20} = -4.2°, c = 1.0, CHCl₃) in 91% yield. To prevent the migration of the

cis-ketal from C-2,3 to C-1,2, which accompanied the direct selective hydrolysis of the <u>trans</u>-cyclohexylidene of (-)-6, the compound was first converted to $(-)-\underline{7}^{10}$ ($[\alpha]_{D}^{20} = -14^{\circ}$, c = 1, CHCl₃) in quantitative yield. The fully protected inositol (2 mmol) was treated with a catalytic amount of p-toluenesulfonic acid (0.2 mmol) in acetone (40 ml) under reflux for 18 min. The resulting compound, without further purification, was subjected to alkaline hydrolysis to give the key intermediate $(+)-\underline{9}^{11}$ ($[\alpha]_D^{20} = +20.8^\circ$, c = 1.0, $CHCl_3$; lit.^{2c} $[\alpha]_D^{20} = +21^\circ$, c = 0.1, $CHCl_3$) in 60% total yield (based on 6). Phosphorylation¹² of triol (+)-9 (1.1 mmol) was achieved by the use of N, N-diisopropyl dibenzyl phosphoramidite (6.6 mmol), 1-H-tetrazole (6.6 mmol) and MCPBA (6.6 mmol) in CH_2Cl_2 to afford (-)-10¹³ $([\alpha]_D^{20} = -4.3^\circ, c = 2.42, CHCl_3; lit.^{2c} [\alpha]_D^{20} = -4.2^\circ, c = 0.1, CHCl_3)$ in 91% yield. Hydrogenolysis of the benzyl groups of $(-)-\underline{10}$ (0.9 mmol) (H₂, 50 psig, 10% Pd/C, 95% EtOH, 5 hr) and the subsequent acid hydrolysis of the cyclohexylidene ketal resulted in D-myo-inositol 1,4,5-triphosphate 1 (hexasodium salt; $[\alpha]_D^{20} = -30^\circ$, c = 0.5, H₂O (pH 9.5); lit.^{2c} $[\alpha]_D^{20} = -30^\circ$, c = 0.16, H₂O (pH 9.5)) in 90% yield. Thus, enantiomeric 1 was prepared from (+)-2 in 45% overall yield. The ¹H and ³¹P NMR spectra of the synthetic compound $\underline{1}$ were identical to those recently reported¹⁴.

It should be noted that, in addition to $Ins(1,4,5)P_3$, enantiomerically pure <u>2</u> also provides a facile entry into a variety of optically active phosphoinositides. Currently, syntheses of enantiomeric $Ins(1,3,4)P_3$ and $Ins(1,3,4,5)P_4$ using a similar approach are undergoing in this laboratory.

Acknowledgements: The authors are grateful to American Chemical Society (PRF #19855-G1) and American Association of Colleges of Pharmacy (Grant Program for Young Investigators) for financial support.

REFERENCES AND NOTES

- 1. a) M. J. Berridge, Ann. Rev. Biochem., <u>56</u>, 159-193 (1987); b) A. H. Drummond, Trends Pharmacol. Sci., 8, 129-133 (1987), and references cited therein.
- 2. Synthesis of optically active Ins(1,4,5)P3: a) S. Ozaki, Y. Watanabe, T. Ogasawara, K. Kondo, N. Shiotani, H. Nishii, and T. Matsuki, Tetrahedron Lett., 27, 3157-3160 (1986); b) C. B. Reese, and J. G. Ward, Tetrahedron Lett., 28, 2309-2312 (1987); c) J. P. Vacca, S. J. deSolms, and J. R. Huff, J. Am. Chem. Soc., 109, 3478-3479 (1987), and d) C. E. Dreef, R. J. Tuinman, C. J. J. Elie, G. A. van der Marel, and J. H. van Boom, Recl. Trav. Chim. Pays-Bas, <u>107</u>, 395-397 (1988).
- 3. S. Ozaki, M. Kohno, H. Nakahira, M. Bunya, and Y. Watanabe, Chem. Lett., 77-80 (1988).
- 4. Preparation of racemic $\underline{2}$: P. J. Garegg, T. Iversen, R. Johansson, and B. Lindberg, Carbohydr. Res., 130, 322-326 (1984).
- 5. The optical purity of individual inositides was determined by HPLC analysis of the corresponding diastereomeric (+)-MTPA esters using a Whatman Partisil (10µm) column (4.6 mm i.d. x 25 cm). The column was eluted with a solvent mixture of hexane-ether (3:1) at a flow rate of 1 ml/min. Retention times: (-)-2 di-MTPA ester: 5 min 50 sec; (+)-2 di-MTPA ester: 7 min 25 sec; (+)-4 MTPA ester: 8 min 20 sec; (-)4 MTPA ester: 8 min 50 sec.
- 6. The enantiomeric mixture can also be chromatographically separated via the corresponding diastereomeric di-1-menthoxyacetic ester, or the di-S-camphanic ester.
- 7. Optical rotation: $\underline{5a}$: $[\alpha]_D^{20} = -31.8^\circ$, c = 1.0, $CHCl_3$; $\underline{5b}$: $[\alpha]_D^{20} = -61.1^\circ$,

- 7. Optical rotation: <u>5a</u>: $[a]_{D}^{2} = -31.8^{\circ}$, c = 1.0, $CHCl_3$; <u>5b</u>: $[a]_{D}^{2} = -61.1^{\circ}$, c = 1.02, $CHCl_3$. 8. N. Nagashima, and M. Ohno, Chem. Lett., 141-144 (1987). 9. For (-)6, δ_{H} (300 MHz; $CDCl_3$) 1.41-1.74 (2H, m), 2.6 (1H, s), 3.48-3.60 (1H, m), 3.90 (1H, t, J = 36.6 Hz), 4.04 (1H, d, J = 2.5 Hz), 4.18 (1H, dd, J = 5.4, 7.3Hz), 4.35 (1H, t, J = 7.3 Hz), 4.44 (1H, dd, J = 3.6Hz), 4.73 (2H, ABg, J = 11.7, 34.7 Hz), 7.27-4.41 (5H, m). 10. For (-)7, δ_{H} (300 MHz, $CDCl_3$) 1.39-1.65 (2H, m), 2.09 (3H, s), 3.59 (1H, dd, J = 6.8, 9.7 Hz), 3.78 (1H, dd, J = 2.0, 5.8 Hz), 4.01 (1H, dd, J = 7.4 Hz), 4.37 (1H, pseudo t, J = 7.4 Hz), 4.51 (1H, dd, J =3.9, 5.8 Hz), 4.76 (2H, s), 5.27 (1H, dd, J = 2.5, 5.3 Hz), 7.26-7.36 (5H, m). (5H, m).
- 11. For (+)-9, δ_{H} (300 MHz, DMSO-d₆) 1.38-1.66 (10H, m), 3.2-3.23 (1H, m), 3.3 (1H, m), 3.46-3.54 (2H, m), 3.75 (1H, m), 3.9 (1H, dd, J = 5.7, 7.4 Hz), 4.25 (1H, dd, J = 3.9, 5.3 Hz), 4.68 (1H, d, J = 4.5 Hz), 4.79 (2H, ABq, J = 10.8, 16.8 Hz), 4.85 (1H, dd, J = 4.6, 7.4 Hz), 7.23 -7.43 (5H, m).
- 12. K.-L. Yu, and B. Fraser-Reid, Tetrahedron Lett., 29, 979-982 (1988).
- 13. For (-)-10, & (300 MHz, CDCl₃) 1.2-1.8 (10H, m), 4.07 (1H, pseudo t, J = 8.2 Hz), 4.2 (1H, pseudo t, J = 8.2 Hz), 4.5-4.60 (3H, m), 4.65 -5.03 (15H, m), 7.0-7.3 (35H, m).
- 14. J. C. Lindon, D. J. Baker, R. D. Farrant, and J. M. Williams, Biochem. J., 233, 257-277 (1986).

(Received in USA 21 November 1988)